
Keys
Quills

& Vibe Coding Checklist

A structured approach to clear, maintainable, and thoughtful code.

Layer 1: Surface Integrity
Can I read this? Does it run? Is it consistent?

Code runs and passes tests

Syntax is clean (linted and formatted)

Naming is clear and descriptive

Structure and file placement are consistent

Formatting aligned with project style

Automation: Are these checks in CI/CD or pre-commit

Layer 2: Clarity & Intent
What is this trying to do, and how clearly does it say it?

Function/module purpose is immediately apparent

Comments are useful and explain why

Logic is readable and flows cleanly

Cognitive load is low

Will this make sense in 6 months?

Layer 3: Abstraction & 
Boundaries

How does this fit into the rest of the system?

DRY is used judiciously

Each function/module/class has one clear purpose

Levels of abstraction are consistent

Scope is clear, modular, and extendable

Avoid dumping-ground folders and files

Imports are clear and minimal

No circular dependencies

Connascence is intentional

Complexity is observed and questioned

Layer 4: System Impact
What happens when this is deployed?

Dependencies are minimal and stable

Code is resilient to change

Structure makes tests easy to write and maintain

Performance is reasonable and scalable

Security - Start with OWASP 10

Error handling is clear and user-friendly

Documentation is updated

Layer 5: Communication & 
Context
Do I understand what changed & why it matters?

Commit/PR message explains intent,

not implementation

Commentary highlights business value, risks,

or tradeoffs

Stakeholders could read the PR and

understand its purpose

Uncertainty or open questions are clearly

flagged

Self-Check
How I reviewed

My comments focused on the code, not the coder

I gave feedback with curiosity, not condescension

I highlighted opportunities for clarity or learning

I made the impact and ROI of changes more visible

I would be happy receiving the kind of feedback

I just gave

https://keysandquills.com


